
Beanstalk
Milestone 2

Terry Yang, Annie Lin,
Hiroka Tamura, Kaelan Mikowicz

Beanstalk - Share your adventure
● Bring people together around trendy

spots and hidden gems!

Outline Frontend: UI / UX Design

Database Schema

Backend: API Endpoints and

Queries

Live Demo

Frontend:
UI / UX Design

App Personality

App Persona

User Experience Design

User Interface Design

App Personality: Brand Traits

➔ A friendly, modern and accessible app

Simple but not unsophisticated

Trustworthy but not dull

Kind but not passive

Hip but not exclusive

Adventurous but not aggressive

App Personality: Voice

➔ Interacts with users in a helpful yet playful tone. Upbeat, sweet and feminine.

➔ Every user is a daring adventurer: the app acts as an assistant/sidekick in their

journeys.

➔ Slightly more formal than conversational, but still human.

Personality Map

App Personality: Visual Lexicons

➔ Color: White with soft emerald-green accents.

◆ Flat colors and little textures that parallel app’s personality of being

simple/non-aggressive.

◆ Green that is kind to the eyes as well as refined and functional.

➔ Text: Sans-Serif font that portrays the app’s feminine tone; clean and professional.

➔ Reduce Clutter: Clean interface that embraces the white space and effectively leads

users’ eyes in navigation.

User Persona

 Molly (21)
● Lives in LA
● Loves LA
● Loves avocado toast and pretty

lattes
● Always looking for the next

instagrammable spot to show her
friends

Vishal (30)
● New Yorker who loves a

good drink
● A little bit of a party

animal

Alan (25)
● A big travel nut
● A major foodie

Cathy (18)
● Fancy pants
● Likes to boast her riches

User Persona: Molly

“Is it picture-worthy?”

Frustrations:
● Not being able to find cool spots her friends are going to

● Not knowing the newest trendy spots near by

● Trying to plan for her travels but not knowing where to go

Goals:

● Wants to find the best food in a certain area.

● Wants others to see what she has been up to and where she has

traveled.

● Is curious about her friend's lives.

UI Design: Low Fidelity

UI Design: High Fidelity

UX Design

Usability
● Simple transitions
● Minimalistic experience
● Fulfills goal of users

Recognizable
● Familiar Icons

Visibility of Feedback
● Users will be informed of what’s going on in the app

Database
Schema

ER Diagram

Database Schema

Beanstalk
ER Diagram

Beanstalk
Database Schema

Backend: API
Endpoints and
Queries

API documentation

Database Queries

Backend

➔ Last time: create, read, update and delete (CRUD) functionality for users relation

➔ Current usage: developer backdoor for root access to database through HTTP

◆ GET - /api/User - Retrieve all users

◆ PUT - /api/User - Update an user

◆ DELETE - /api/User - Delete an user

Backend

➔ New API endpoints for user registration and login (returns authentication token upon

success)

◆ POST - /api/User/register - Register with username, email, first name, last name,

and password

◆ POST - /api/User/login - Login with username and password

Backend

➔ New API endpoints for user profiles (requires an authentication token to access)

◆ Token is JWT HMAC secret encoded. Sent as “Authorization” header

➔ Own user profile (decoded authentication token matches the <username>)

◆ GET - /api/User/profile/<username> - Get privileged info for the user’s profile

◆ PUT - /api/User/profile/<username> - Update fields for the user’s profile

➔ Other user profile (decoded authentication token does not match the <username>)

◆ GET - /api/User/profile/<username> - Get limited info for the user’s profile

depending on privacy settings

User Registration - POST

INSERT INTO "user" (username, email, password_hash, first_name,

last_name, privacy, created_at, updated_at, profile_pic)

VALUES (%(username)s, %(email)s, %(password_hash)s, %(first_name)s,

%(last_name)s, %(privacy)s, %(created_at)s, %(updated_at)s, %(profile_pic)s)

RETURNING "user".id

User Login - POST

SELECT "user".id, “user”.password_hash
FROM "user"
WHERE "user".username = %(username_1)s
LIMIT 1

User Profile - GET

SELECT "user".id, "user".username, "user".email, "user".first_name,
"user".last_name, "user".privacy "user".profile_pic
FROM "user"
WHERE "user".id = %(id_1)s
LIMIT 1

User Profile - PUT

UPDATE "user"
SET updated_at=%(updated_at)s, <arg=value>
WHERE "user".id = %(user_id)s

Counting Followers
Following me:
SELECT COUNT(followingUID)
FROM “Follows”
WHERE UID = %(user_id)

I’m Following:
SELECT COUNT(UID)
FROM “Follows”
WHERE followingUID = %(user_id)

Counting Likes
Comments:

SELECT COUNT(UID)
FROM “Comment_Like”
WHERE commentID = %(comment_id)

Posts:

SELECT COUNT(UID)
FROM “Like”
WHERE PID = %(post_id)

Relational Queries

Getting all comments for a post:

SELECT “Comment”.commentID, “Comment”. comment, “Post”.PID,
FROM “Post”
JOIN “Comment” ON “Comment”.PID = “Post”.PID
WHERE “Post”.PID = %(post_id)

Relational Queries

Get posts around a gps point using PostGIS:

SELECT “Post”.PID, “Location”.LID
FROM “Location”
JOIN “Post” ON “Location”.PID = “Post”.PID
WHERE ST_Distance_Sphere(“Location”.gps, ST_Make_Point(%lon, %lat)) <
10 * 1000

Live Demo

Project Goals

Registration

User Login

Authentication

User Profile Editing

Questions?

